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We report a new line-narrowing effect associated with triple-
quantum resonance in a two-level NMR system. The experiment
was carried out in the rotating frame on 19F nuclei in Teflon; namely,
the magnetization is spin-locked along the RF field and the triple-
quantum resonance is induced by the oscillating field perpendicular
to the RF field. We observed that the decay time of the triple-
quantum nutation becomes extraordinarily long at a particular
intensity and frequency of the oscillating field. The decay time is
about seven times as long as that of the single-quantum nutation and
also much longer than that of the magic angle nutation. The mech-
anism is not interpreted by straightforward analogy to the theory
of the current magic angle narrowing. C© 2002 Elsevier Science (USA)
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Various novel effects have been observed in the field of
multiple-quantum NMR (1). In this paper, we report for the
first time, to our knowledge, a new line-narrowing effect in
the triple-quantum (TQ) resonance in a two-level NMR system.
The experiment was carried out on 19F nuclei in Teflon in the ro-
tating frame; namely, the magnetization is first aligned along the
resonant RF field with intensity ω1/γ (γ ; gyromagnetic ratio)
by a standard spin-locking technique (2) and the TQ resonance
in the rotating frame is induced by a low-frequency (LF) oscil-
lating field perpendicular to the RF field. Experimentally, the
LF field is effectively produced by a phase modulation (PM)
of the RF field. As is well known a sinusoidal PM at an an-
gular frequency ω2 with modulation index 2φm produces a vir-
tual oscillating magnetic field at ω2 with amplitude 2φmω2/γ

perpendicular to the RF field in the phase-modulated rotating
frame.

What we observed is as follows. When ω2/2π = 26.45 kHz
(which is slightly higher than the TQ resonance frequency
1
3ω1/2π ) and 2φm = 0.764π rad (φmω2 is not so small com-
pared to ω1), the decay of the TQ transient nutation becomes
extraordinarily long as shown by the dotted curve in Fig. 1. The
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line narrowing is most remarkable at these values of φm and ω2.
The solid line in Fig. 1 is a single-quantum (SQ) nutation sig-
nal obtained when ω2/2π = 66 kHz (∼=ω1/2π ), and the dashed
line is a spin–lattice relaxation curve in the rotating frame ob-
served with the same RF intensity. The decay time of the TQ
nutation (∼=1.8 ms) is about seven times as long as that of the
SQ nutation (∼=260 µs), and is compared with the spin–lattice
relaxation time in the rotating frame (∼=6.5 ms). It is notewor-
thy that the decay time of the TQ nutation is also much longer
than that of the magic angle rotary echo envelope observed in
Teflon (3).

As will be shown below, the long decay results from the disap-
pearance of the secular dipole Hamiltonian in the TQ resonance
and also the considerable decrease of the effects of the nonsecu-
lar part. This effect is not interpreted by straightforward analogy
to that of the current magic angle nutation (4, 5).

We consider like spins I (=	 I j ) which are spin-locked by
the exactly resonant RF field at the angular frequency ω0

and affected by the magnetic dipole interaction described by
the Hamiltonian h- � (0)

d = 	D jk(3I j z Ikz − I j Ik), where D jk is a
geometrical factor of a well-known form (6). The total Hamilto-
nians � j (t) ( j = 0 ∼ 7) and a series of unitary transformations
necessary for the explanation are shown in Table 1. The magni-
tudeφmω2 is not sufficiently weak compared toω1. We first trans-
form the Hamiltonian �0(t) to �2(t) in the phase-modulated and
tilted rotating frame with the unitary operators U1 and U2. For the
TQ resonance in the two-level system to occur, the existence of
the counterrotating field contained in the LF field is necessary (7)
because of the angular momentum conservation. The counter-
rotating field also induces level shifts; the resonance frequency
increases as φmω2 increases (7, 8). In order to take into account
the contribution of the counterrotating field, we transform the
Hamiltonian �2(t) to that in the reference frame rotating at ω2

around the RF field in the reverse sense to the nuclear precession
(9, 10). Then, the transformed Hamiltonian �3(t) is furthermore
transformed to �5(t) in the reference frame rotating at 2ω2 in
1090-7807/02 $35.00
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FIG. 1. TQ nutation signal almost at K = 0 (dots). The experimental condi-
tion is that ω2/2π = ω20/2π = 26.45 kHz, 2φm = 0.764π rad, ω1/2π = 65 kHz,
and ω0/2π = 27 MHz. The solid line shows the SQ nutation signal ob-
served at ω2/2π = 66 kHz and with 2φm = 0.0940π rad, where the difference
(ω2 − ω1)/2π = 1 kHz corresponds to a Bloch–Siegert shift (8). The dashed
line is the decay curve of the magnetization spin-locked by the RF field without
the PM, showing a spin–lattice relaxation in the rotating frame. All curves are
obtained by plotting the intensity of the free induction decay signal just after
the spin-locking RF pulse as a function of the duration t of the PM (dotted and
solid lines) or of the RF pulse (dashed line).

the same sense to the nuclear precession around the resultant
effective field ωe/γ = [(ω1 + ω2)2 + (φmω2)2]1/2/γ , where the
effective field ωe/γ is at an angle θ = arccos[(ω1+ω2)/ωe] with
the RF field. In the reference frame rotating simultaneously at
ω2 and 2ω2, there exists a field of the amplitude φmω2 sin θ/γ
oscillating at 2ω2 along the effective field ωe/γ together with the
static field ω∗

e/γ = {(ωe − 2ω )2 + [ 1φ ω (1 + cos θ )]2}1/2/γ ,
= K

j,k

D jk(3I j x Ikx − I j Ik), [2]

2 2 m 2

TABLE 1
Total Hamiltonians and the Transformation Process

�0(t) = −ω1e2iφm Iz sin ω2t Ix e−2iφm Iz sin ω2t + �(0)
d (The x axis is along the RF field.),

U1 = e−2iφm Iz sin ω2t ,

�1(t) = −ω1 Ix + 2φmω2 Iz cos ω2t + �(1)
d ,

U2 = ei π
2 Iy ,

�2(t) = −ω1 Iz − 2φmω2 Ix cos ω2t + �(2)
d ,

U3 = eiω2 Iz t ,

�3(t) = −(ω1 + ω2)Iz − φmω2 Ix − φmω2 Ix cos 2ω2t + φmω2 Iy sin 2ω2t + �(3)
d (t),

U4 = eiθ Iy ,

�4(t) = −ωe Iz − φmω2 Ix cos θ cos 2ω2t − φmω2 Iz sin θ cos 2ω2t + φmω2 Iy sin 2ω2t + �(4)
d (t),

U5 = e−2iω2 Iz t ,

�5(t) = −(ωe − 2ω2)Iz − 1
2 φmω2(1 + cos θ )Ix − φmω2 Iz sin θ cos 2ω2t

− 1
2 φmω2(cos θ − 1)e−4iω2 Iz t Ix e4iω2 Iz t + �(5)

d (t) (the fourth term neglected),
U6 = eiα Iy ,

�6(t) = −ω∗
e Iz + φmω2 Ix sin θ sin α cos 2ω2t

− φmω2 Iz sin θ cos α cos 2ω2t + �(6)
d (t) (the third term neglected),

U7 = e−2iω2 Iz t ,

�7(t) = 1
2 φmω2 sin θ sin α Ix + �(7)

d (t).
Note. Hamiltonians � j (t) ( j = 0 ∼ 7) are expr

Hamiltonians �( j)
d (t) are given in Table 2.
CATIONS

which is at an angle α = arccos[(ωe − 2ω2)/ω∗
e ] with the effec-

tive field ωe/γ .
The TQ resonance is induced by the component of this oscil-

lating field perpendicular to the static field ω∗
e/γ in this rotating

frame, when 2ω2
∼= ω∗

e (see �6). We limit ourselves to the
case

ω2 = 1

2
ω∗

e . [1]

The frequency ω2 that satisfies Eq. [1] is the exact TQ reso-
nance frequency including level shifts, which is denoted by ω20

hereafter. Although the explicit expression of ω20 is compli-
cated because ω∗

e is a function of ω2, Eq. [1] shows that for
φm = 0, ω20 = 1

3ω1, and for φm 
= 0, ω20 > 1
3ω1, and ω20 increases

as φmω2 increases. The amplitude of the resonant component
(φmω2 sin θ sin α)/γ in �6(t) is so small that its counterrotating
field can be neglected. The TQ nutation at ω2 = ω20 is described
by the Hamiltonian �7, neglecting the time-dependent part of
� (7)

d (t). The time-independent part of � (7)
d (t) is denoted by �̄d.

The TQ nutation decay is predominantly governed by the secu-
lar part �†

d which is the part of �̄d that commutes with Ix . The
explicit expression of �†

d is

�†
d =

∑
j,k

D jk

√
6

2∑
�=−2,

2∑
m=−2,

2∑
n=−2,

2∑
s=−2

T ( jk)
2s d2

s0

(
π

2

)
d2

0n

(
−π

2

)

(�−2m−2n=0)

× d2
nm(−α)d2

m�(−θ )d2
�0

(
−π

2

)
∑

essed in units of h-. Explicit forms of the dipole
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TABLE 2
Dipole Hamiltonians

h- � (p)
d = ∑

j,k
D jk H ( jk)

p (p = 1 ∼ 7),

H ( jk)
1 = 3I j z Ikz − I j Ik = √

6T ( jk)
20

H ( jk)
2 = √

6
2∑

�=−2
T ( jk)

2� d2
�0(− π

2 ),

H ( jk)
3 (t) = √

6
2∑

�=−2
T ( jk)

2� d2
�0(− π

2 )ei�ω2t ,

H ( jk)
4 (t) = √

6
2∑

�=−2,

2∑
m=−2

T ( jk)
2m d2

m�(−θ )d2
�0(− π

2 )ei�ω2t ,

H ( jk)
5 (t) = √

6
2∑

�=−2,

2∑
m=−2

T ( jk)
2m d2

m�(−θ )d2
�0(− π

2 )ei(�−2m)ω2t ,

H ( jk)
6 (t) = √

6
2∑

�=−2,

2∑
m=−2,

2∑
n=−2

T ( jk)
2n d2

nm (−α)d2
m�(−θ )d2

�0(− π
2 )ei(�−2m)ω2t ,

H ( jk)
7 (t) = √

6
2∑

�=−2,

2∑
m=−2,

2∑
n=−2

T ( jk)
2n d2

nm (−α)d2
m�(−θ )d2

�0(− π
2 )ei(�−2m−2n)ω2t ,

h- �̄d = ∑
j,k

D jk
√

6
2∑

�=−2,

2∑
m=−2,

2∑
n=−2

T ( jk)
2n d2

nm (−α)d2
m�(−θ )d2

�0(− π
2 ).

(�−2m−2n = 0)

Note. Definitions of T ( jk)
2m and d2

nm (α) are given in Ref. (11).

with

K = 1

16
(3 cos2 α − 1)(3 cos2 θ − 1) − 3

64
sin 2α(3 sin 2θ

+ 2 sin θ ) + 3

32
sin α(sin 2θ − 2 sin θ )

− 3

32
(1 − cos α)2 sin2 θ. [3]

Numerical evaluations of K as a function of φmω2 (ω20 is also a
function of φmω2) indicate that K becomes 0 at cos θ ∼= 0.9476
and cos α ∼= 0.8236 independent of ω1. The value of ω20 for
K = 0 depends on ω1, and for ω1/2π = 65 kHz, ω20/2π be-
comes ∼=26.46 kHz at K = 0. Since the angles θ and α for K ∼= 0

FIG. 2. Dependence of the experimental decay rate of the TQ nutation T −1
(dots) and that of the theoretical value |K | (solid line) on ω20. The decay rate
T −1 is measured by assuming an exponential decay.
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are not large, the TQ nutation can be fully observed through an
oscillation of the magnetization M along the RF field.

In the experiment, we searched TQ resonance including level
shifts by varying ω2 and φm. The longest decay time was ob-
served at ω2/2π = 26.45 kHz and 2φm = 0.764π rad as shown
by the dotted curve in Fig. 1. The corresponding values of θ

and α are almost equal to the theoretical values for K = 0. The
TQ nutation frequency ( 1

2φmω2 sin θ sin α)/2π (2.99 kHz) cal-
culated with the values of ω2 and φm is in good agreement with
the oscillation frequency (2.83 kHz) estimated from the dotted
curve. Thus, the TQ nutation in Fig. 1 represents the behav-
ior at the exact TQ resonance including level shifts almost at
K = 0.

As ω20 deviates from the value for K = 0 the nutation decay
time (at ω2 = ω20) decreases as shown by the dots in Fig. 2,
where an exponential decay (e−t/T ) is assumed. The solid line
shows the theoretical dependence of the value of |K | on ω20.
The experimental result in Fig. 2 indicates that the decay is
due mainly to the dipole interaction represented by Eq. [2].
The result that the decay time T around ω20/2π = 26.46 kHz
is not as long as is expected from the theoretical curve may
be due to the influences of the dipole interaction represented
by the nonsecular part � ‡

d = �̄d − �†
d (3) and the spin–lattice

relaxation in the rotating frame. (The effect of the inhomo-
geneity in φmω2 can be neglected because a sample whose
volume was about 1/80 of that of the sample coil was used.)
The fact that the decay time near K = 0 is much longer
than that of the current magic angle nutation (3) may be ex-
plained by comparing the explicit forms of �‡

d and the corre-
sponding dipole Hamiltonian in the magic angle nutation. In
both cases the nonsecular dipole Hamiltonians consist of two
terms written as A	D jk(I jy Iky − I j z Ikz) and B	D jk(I j x Ikz +
I j z Ikx ). The values of |A| and |B| in � ‡

d, which are com-
plicated functions of θ and α, become ∼=2.4 × 10−3 and
∼=0.23 at K = 0, respectively. On the other hand, the corre-
sponding values in the magic angle nutation are 1 and

√
2,

respectively.
A similar numerical calculation shows that line narrow-

ing of this type can also be expected slightly at TQ off reso-
nance.

The narrowing effect of this type may be useful for high-
resolution NMR in solids and may occur for other multiple-
quantum resonance. The details will be published later.
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tiques, Acad. Sci. 241, 373–375 (1955).
8. F. Bloch and A. Siegert, Magnetic resonance for nonrotating fields, Phys.
Rev. 57, 522–527 (1940).
ATIONS

9. A. Abragam, “The Principles of Nuclear Magnetism,” Oxford Univ. Press,
Oxford (1961).

10. N. Tabuchi and H. Hatanaka, Rotating frame analog of spin-
locking and spin–lattice relaxation in the doubly rotating frame,
J. Magn. Reson. 148, 121–125 (2001), doi:10.1006/jmre.2000.
2217.
11. M. Mehring, “High Resolution NMR Spectroscopy in Solids,” Springer-
Verlag, Berlin/New York (1976).


	FIG. 1.
	TABLE 1
	TABLE 2
	FIG. 2.
	REFERENCES

